Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 264(Pt 1): 130542, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432272

RESUMEN

Pathological cardiac hypertrophy (CH) is driven by maladaptive changes in myocardial cells in response to pressure overload or other stimuli. CH has been identified as a significant risk factor for the development of various cardiovascular diseases, ultimately resulting in heart failure. Melanoma differentiation-associated protein 5 (MDA5), encoded by interferon-induced with helicase C domain 1 (IFIH1), is a cytoplasmic sensor that primarily functions as a detector of double-stranded ribonucleic acid (dsRNA) viruses in innate immune responses; however, its role in CH pathogenesis remains unclear. Thus, the aim of this study was to examine the relationship between MDA5 and CH using cellular and animal models generated by stimulating neonatal rat cardiomyocytes with phenylephrine and by performing transverse aortic constriction on mice, respectively. MDA5 expression was upregulated in all models. MDA5 deficiency exacerbated myocardial pachynsis, fibrosis, and inflammation in vivo, whereas its overexpression hindered CH development in vitro. In terms of the underlying molecular mechanism, MDA5 inhibited CH development by promoting apoptosis signal-regulating kinase 1 (ASK1) phosphorylation, thereby suppressing c-Jun N-terminal kinase/p38 signaling pathway activation. Rescue experiments using an ASK1 activation inhibitor confirmed that ASK1 phosphorylation was essential for MDA5-mediated cell death. Thus, MDA5 protects against CH and is a potential therapeutic target.


Asunto(s)
Apoptosis , MAP Quinasa Quinasa Quinasa 5 , Ratones , Ratas , Animales , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Apoptosis/fisiología , Cardiomegalia/metabolismo , Transducción de Señal , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo
2.
J Am Heart Assoc ; 12(24): e029745, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38084712

RESUMEN

BACKGROUND: Cardiac hypertrophy (CH) is a well-established risk factor for many cardiovascular diseases and a primary cause of mortality and morbidity among older adults. Currently, no pharmacological interventions have been specifically tailored to treat CH. OTUD7B (ovarian tumor domain-containing 7B) is a member of the ovarian tumor-related protease (OTU) family that regulates many important cell signaling pathways. However, the role of OTUD7B in the development of CH is unclear. Therefore, we investigated the role of OTUD7B in CH. METHODS AND RESULTS: OTUD7B knockout mice were used to assay the role of OTUD7B in CH after transverse aortic coarctation surgery. We further assayed the specific functions of OTUD7B in isolated neonatal rat cardiomyocytes. We found that OTUD7B expression decreased in hypertrophic mice hearts and phenylephrine-stimulated neonatal rat cardiomyocytes. Furthermore, OTUD7B deficiency exacerbated transverse aortic coarctation surgery-induced myocardial hypertrophy, abnormal cardiac function, and fibrosis. In cardiac myocytes, OTUD7B knockdown promoted phenylephrine stimulation-induced myocardial hypertrophy, whereas OTUD7B overexpression had the opposite effect. An immunoprecipitation-mass spectrometry analysis showed that OTUD7B directly binds to KLF4 (Krüppel-like factor 4). Additional molecular experiments showed that OTUD7B impedes KLF4 degradation by inhibiting lysine residue at 48 site-linked ubiquitination and suppressing myocardial hypertrophy by activating the serine/threonine kinase pathway. CONCLUSIONS: These results demonstrate that the OTUD7B-KLF4 axis is a novel molecular target for CH treatment.


Asunto(s)
Coartación Aórtica , Factor 4 Similar a Kruppel , Ratones , Ratas , Animales , Cardiomegalia/genética , Cardiomegalia/prevención & control , Cardiomegalia/metabolismo , Fenilefrina/farmacología , Fenilefrina/metabolismo , Ratones Noqueados , Ubiquitinación , Miocitos Cardíacos/metabolismo , Ratones Endogámicos C57BL , Endopeptidasas/metabolismo , Endopeptidasas/farmacología
3.
Free Radic Biol Med ; 192: 13-24, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108935

RESUMEN

Diabetic cardiomyopathy (DCM) is ventricular dysfunction that occurs in patients with diabetes mellitus (DM), independent of recognized risk factors, such as coronary artery disease, hypertension, and valvular heart disease. Dual-specificity phosphatase 12 (DUSP12) is a dual-specificity phosphatase expressed in all tissues. Genome-wide linkage studies have found an association between DUSP12 and type 2 diabetes (T2D). However, the role of DUSP12 in DCM remains largely unknown. Ubiquitously expressed DUSP12 is involved in nonalcoholic fatty liver disease, bacterial infection, and myocardial hypertrophy and plays a critical role in tumorigenesis. Herein, we observed an increased expression of DUSP12 in a hyperglycemia cell model and a high-fat diet (HFD) mouse model. Heart-specific DUSP12-deficient mice showed severe cardiac dysfunction and remodeling induced by an HFD. DUSP12 deficiency exacerbated oxidative stress injury and apoptosis, whereas DUSP12 overexpression had the opposite effect. At the molecular level, DUSP12 physically bound to apoptotic signal-regulated kinase 1 (ASK1), promoted its dephosphorylation, and inhibited its action on c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Rescue experiments have shown that oxidative stress injury and apoptosis, exacerbated by DUSP12 deficiency, are alleviated by ASK1 inhibition. Therefore, we consider DUSP12 an important signaling pathway in DCM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Fosfatasas de Especificidad Dual , Estrés Oxidativo , Animales , Apoptosis , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Cardiomiopatías Diabéticas/genética , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...